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Improving the Performance of

Volatility-Managed Portfolios∗

Abstract

Recent studies have criticized volatility-managed portfolios for two reasons: poor

out-of-sample performance and inaccessible abnormal returns owing to transaction

costs. We propose a simplified and more robust method of volatility-timing by focusing

on downside forecasting using past volatility. The proposed trading strategies are free

of look-ahead bias and have low trading costs. We show that downside-managed port-

folios outperform unmanaged portfolios and volatility-managed portfolios. Lastly, we

show that downside-managed portfolios embed a mechanism to ideally balance between

type I and type II errors in downside forecasting under return asymmetries.

JEL Classification: G10, G11, G12
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1 Introduction

A pearl of common wisdom in investment is that long-term investors should refrain from

market timing and ignore short-term market volatility. Recent studies (Moreira and Muir

(2017), Moreira and Muir (2019)) challenge this view and argue that investors could benefit

from volatility-managed portfolios, which are constructed to have a reduced risk exposure

after an increase in volatility. However, Cederburg et al. (2020) show that volatility-managed

portfolios are not implementable in real-time and have worse out-of-sample performance than

the original unmanaged portfolios. In another study, Barroso and Detzel (2021) find that the

limit to arbitrage prevents the correction of mispricing indicated by the positive spanning

alpha of volatility-managed portfolios. This evidence calls into question the value of volatility

timing for real-time investors facing trading frictions and lends support to traditional wisdom.

In this paper, we propose a method of volatility-timing in real-time to improve out-of-sample

performance and provide new insights into the benefits of market timing portfolios for long-

term investors.

As pointed out by Cederburg et al. (2020), the effectiveness of a volatility-managed port-

folio depends upon the relation between lagged volatility and future expected returns, and

this risk-return trade-off could be unstable over time. The most well-known example is the

risk-return relation for the market portfolio, with ambiguous relations found in the literature

(e.g., Glosten et al. (1993) show that both directions are consistent with theory). Volatility

management suggests that investors should sell when observing high market volatility. How-

ever, the standard financial advice is that a sudden rise in volatility is typically associated

with panic selling, which can be attractive buying opportunities. Furthermore, Martin (2017)

shows that the expected return on the market is high when the option-implied volatility is

high, and investors should buy during periods of high market volatility. These seemingly

contradictory suggestions stem from different underlying assumptions about the relation be-

tween the lagged volatility and future realized returns. These assumptions are difficult to
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verify in real-time or out-of-sample.

We proposed a downside-managed portfolio, which simplifies the underlying assumptions

and focuses directly on the core relation behind the volatility timing argument, the relation

between lagged volatility shoot-up and future market downside. In our view, this is of first-

order importance in volatility timing because investors are more concerned about avoiding

market crashes than fine-tuning the stocks’ positions based on volatility. While finding a

strong risk-return relation might be elusive for the market portfolio, market volatility can

provide useful information about the future market downside. The separation of downside

prediction and calculating portfolio weights is essential in out-of-sample performance for two

important reasons. First, it is difficult to obtain robust risk-return trade-offs, especially out-

of-sample. Second, Lochstoer and Muir (2022) show that investors have slow-moving beliefs

about stock market volatility, and an initial rise in volatility could signal further downturns

in the stock market.

Empirically, Table 1 and Figure 1 provide intuition for our portfolio. We first check

the in-sample covariance between the Sharpe ratio and lagged volatility in Table 1. Past

volatility significantly correlates with the future Sharpe ratio for the market factor (consis-

tent with Moreira and Muir (2017)), but the relation is not systematically significant among

nine factors (with 4 out of 9 being significant). If we look at the relation for market factor

in a real-time scenario, as shown in the top panel of Figure 1, the real-time relation is not

stable and significant over time. This provides direct evidence to show why a volatility-

managed portfolio does not work in real time. We also find that the covariance between

return and lagged volatility is insignificant and unstable over time. In contrast, past volatil-

ity can persistently and significantly predict future Value-at-Risk (VaR), associated with a

higher probability of large negative returns. Motivated by this observation, we construct

downside-managed portfolios by dynamically switching between buy-and-hold and reduced

stock positions based on predicting the normal or downside states.

The goal of downside management is to avoid extreme negative returns. Our approach
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relies on the insights from the literature on probability density forecasts, which have become

a standard practice in many areas of economics and finance (see, e.g., Diebold et al. (1998),

Granger and Pesaran (2000), Corradi and Swanson (2006)). Applications include optimal

business cycle turning point forecasts (Zellner et al. (1991)), and financial risk management

using certain distribution aspects, such as value-at-risk (VaR). Econometric models have

some success in forecasting conditional densities or higher-order moments even though they

have difficulty forecasting conditional means (see, e.g., Diebold et al. (1998) and Hong et al.

(2007)).

Our approach to downside prediction consists of downside probability estimation and

parameter optimization. We estimate downside probability by logistic regression with rolling

training periods, and search the optimal model parameter by maximizing the Fβ score. The

Fβ score is a useful measure for prediction accuracy in situations where the outcome is

unbalanced, such as downside events, which are unlikely to occur relative to the alternative.

By construction, the Fβ score penalizes type I errors (false positives) and type II errors (false

negatives). β is the parameter measuring the relative weights of two types of errors. We use

the Fβ score for parameter optimization rather than other portfolio performance measures

such as the Sharpe ratio because the Fβ score is a direct measure of downside prediction

accuracy, and because the relationship between volatility and downside is more stable. When

the relationship between volatility and performance measure is unstable, the parameter

choice from in-sample optimization cannot guarantee superior out-of-sample performance.

With our approach, we first find that the real-time performance of the downside-managed

portfolio is significantly better than the original unmanaged portfolio. Specifically, we evalu-

ate the performance using different metrics, including Sharpe ratio(SR), Certainty equivalent

return(CER), Certainty equivalent return with asymmetric preference(CERasy), and max-

imum drawdown. The real-time downside-managed portfolios of nine major factors exceed

the original factors in all cases measured by Sharpe ratio (with seven significant differences)

and beat in 7 cases measured by CER (with five significant differences). In a broad sample,
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downside-managed portfolios outperform 63 anomaly portfolios (32 significant beats) out of

94 anomalies (summarised by Hou et al. (2015) and McLean and Pontiff (2016)) measured

by the Sharpe ratio and beat 88 portfolios (66 significant beats) measured by CER. We also

show that the downside-managed portfolios achieve lower maximum drawdown and enhance

the utility gains of investors with asymmetric preferences.

Second, we explore the option-implied volatility about future market returns and find

options containing important information to better predict future market downturns. The

managed market portfolio using the options data achieves a much higher Sharpe ratio than

the original market portfolio and the managed portfolio with lagged volatility.

Third, we test the performance of the managed portfolios after transaction costs. The

results are robust by assuming different levels of monthly trading costs and by comparing the

break-even transaction costs. The downside-managed portfolios have much lower turnover

ratios than the volatility-managed portfolios and, therefore can be better applied in a setting

with high transaction costs.

Volatility timing might not work all the time and for all return distributions. Why would

our strategy perform better for some portfolios than others in our setting? The answer to

this question could highlight the mechanism of our strategy and the appropriate situations

to implement it. Conceptually, volatility-timing allows investors to deviate from the return

distributions of the original unmanaged portfolios. Theoretically, investor preference and

model prediction accuracy jointly determine the appropriate degree of deviation in distribu-

tion through volatility timing. Many studies have highlighted the implications of investor

preference on portfolio choice (Gul (1991); Routledge and Zin (2010); Polkovnichenko et al.

(2019)). Our approach allows the separation of these two determinants and singles out the

role of model prediction accuracy. In our approach, maximizing the Fβ score for a given β

matters for prediction accuracy. β is an investor’s choice in switching between the risk-free

asset (in the predicted downside state) and the original unmanaged portfolio (in the pre-

dicted normal state). Specifically, we show that β choice depends on the prediction model
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and the return asymmetry of unmanaged portfolios. More aggressive downside management

is appropriate for better prediction models and more negatively skewed return distribution.

Our study contributes to the literature on the value of volatility timing. We provide an

improved volatility timing method that is robust to trading costs and estimation risk and

show that it can benefit mean-variance investors and mean-variance-asymmetry investors in

real-time implementation.

Our study adds to the understanding of portfolio choice theory. Within our approach,

the traditional buy-and-hold portfolios are optimal for investors who are extremely averse to

false positives in downside prediction. Conversely, risk-free assets are optimal for investors

extremely averse to false negatives in downside prediction. Missing out on the upside from

false positives and suffering from the downside from false negatives is an inevitable trade-off.

Our study also relates to the recent literature on “p-hacking”. Our approach separates

model prediction accuracy and investor preference. Harvey (2017) raises the concern that the

researchers yield an embarrassing number of false positives in anomaly discoveries due to mul-

tiple testing and selection bias. Since researchers could have different attitudes toward false

positives from investors, sub-optimal predictive models may have been deployed in anomaly

discoveries. Our approach directly deals with false positives by simplifying volatility-timing

to downside prediction. This is an alternative approach to more restricted criteria introduced

to reduce the number of false discoveries (Benjamini and Hochberg (1995); Benjamini and

Yekutieli (2001); Harvey and Liu (2014); Harvey (2017)).

The rest of the paper is organized as follows. Section 2 describes our methodology and

model implications, followed by the data and sample in section 3. We evaluate the out-of-

sample performance of the strategies in Section 4. Section 5 provides some further analysis

of the strategy. Finally, we conclude in Section 6.
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2 Methodology

In this section, we introduce our methodology to construct the downside-managed portfolios.

We first describe the model to predict the downside state. Then we illustrate how we adjust

our positions of portfolios according to the predicted state. We also discuss the economic

mechanism of the parameter level in our model and its role in optimal portfolio choice.

Consider an asset with return series rt, where t = 1, 2, 3, ..., T . We assume that over time

its price switches between a normal state and a downside state, under which it experiences

a crash. At the beginning of each time period t (or the end of the previous time period

t− 1), we predict the state at time t, and determine the position of our downside-managed

portfolios. If we predict a normal state, then we take a full position on the asset, i.e., we hold

the asset. Otherwise, if we predict a downside state, then we reduce our position accordingly.

Therefore, the predictive model is key to our downside-managed portfolios.

We adopt the classification methodology, one of the supervised learning techniques, to

conduct predictive analytics with categorical outcomes. We first use logistic regression with

lagged volatility to estimate the downside probability, then we search for the optimal thresh-

old maximizing predictive performance. Finally, the position for the coming time period

t depends on the predicted state by comparing the estimated probability and the optimal

threshold. The method combines logistic regression and binary classification, a fundamental

practice in machine learning. Our goal is to find a sensible model with high predictive power

and to illustrate the potential of downside management via volatility-timing. Moreover, our

method could be adapted to different preferences and different return distributions of the

managed portfolio.1

1Our downside-managed portfolios are not limited to the predictive model described in this subsection.
In this paper, we adopt a classic model to examine the performance of the downside-managed portfolios. As
more accurate prediction a better construction of the portfolios, applying a more advanced predictive model
could potentially increase the performance of the portfolios.
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To predict the state at time t, we consider the following logistic regression:

log
Pr(Downτ )

1− Pr(Downτ )
= δ0 + δ1στ−1, (1)

where Pr(Downτ ) is the probability of the downside state at time τ , στ−1 is the volatility

estimated at time τ − 1, and τ = 2, ..., t− 1.

We consider two ways of estimating the return volatility στ . First, we estimate it based

on returns with higher frequency. For example, when we consider monthly trading strategies,

we follow Moreira and Muir (2017) and use daily returns during month τ to estimate στ :

στ =

√√√√ Nτ∑
j=1

f 2
j,τ , (2)

where fj,τ represents the return on the jth trading day in month τ , and Nτ is the number of

trading days in month τ .

We also consider the SVIX index introduced in Martin (2017) as an alternative measure

of στ . The SVIX index is a measure that extracted from option prices that capture the

future risk-neutral variance of the return of the underlying asset, which also contains useful

information in predicting the future return. We discuss the estimation of the SVIX index in

Section 3.

For each time τ = 2, 3, ..., t− 1, we define a crash dummy Downτ as a binary dependent

variable:

Downτ =

 1 if rτ < rvarτ−1;

0 if rτ > rvarτ−1,
(3)

where rvar is a pre-specified percentile of the empirical return distribution from time 1 to

time τ − 1.

With return volatilities, σ1, σ2, ..., σt−2, and crash dummies, Down2, Down3, ..., Downt−1,

we fit model (1) and obtain parameter estimation δ̂0,t and δ̂1,t. Together with return volatility
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of time t − 1, σt−1, we get fitted log odds, δ̂0,t + δ̂1,tσt−1, and use it to predict the state at

time t:

D̂ownt =

 1 if δ̂0,t + δ̂1,tσt−1 > yt;

0 if δ̂0,t + δ̂1,tσt−1 ≤ yt,

where yt is some threshold chosen based on information up to time t− 1. When D̂ownt = 1,

we predict a downside state for time t, and a normal state otherwise.

We next illustrate our choice of optimal yt. With estimates of δ̂0,t and δ̂1,t, we first have

a time-series of fitted log odds: δ̂0,t + δ̂1,tστ , where τ = 1, 3, ..., t− 2. Any value of yt yields

a time-series of fitted state variables: D̂own
yt

τ , where

D̂own
yt

τ =

 1 if δ̂0,t + δ̂1,tστ−1 > yt;

0 if δ̂0,t + δ̂1,tστ−1 ≤ yt,
(4)

and τ = 2, 3, ...t−1. By comparing the realized states Downτ with the fitted values D̂own
yt

τ ,

we can classify the observations from t = 2, 3, ..., t−1 into four scenarios: true positive (TP),

false positive (FP), true negative (TN), and false negative (FN), defined in the following

table:

Downτ = 1 Downτ = 0

D̂own
yt

τ = 1 TP FP

D̂own
yt

τ = 0 TN FN

We select the threshold yt to maximize the Fβ measure:

Fβ =
(1 + β2)#TP

(1 + β2)#TP + β2#FN +#FP
. (5)

The choice of β reflects the balance between FP (type I error) and FN (type II error).
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When β = 1, the importance between FP and FN are equal. This case corresponds to the

F1 measure that is commonly used for prediction evaluations:

F1 =
2#TP

2#TP +#FN +#FP
.

Alternative levels of β also have important implications, which will be discussed in the next

subsection.

With the empirically selected threshold yt, we are able to give the prediction of state at

time t by (4), and determine the position of our managed portfolilo at time t:

D̂ownt Predicted state Position

1 Downside 0.5

0 Normal 1

We then repeat the procedure for all time periods t in our sample to construct the

managed portfolios. It is important to notice that with this procedure, the constructed

strategy does not suffer from look-ahead bias. This is because determining the position for

time t does not include any future information.

The downside managed portfolios have several appealing features. First, the weight of the

asset depends on a two-state prediction, such that the corresponding position does not have to

change frequently. Such infrequent rebalancing differs from the volatility-managed portfolios

that typically require the investor to conduct monthly rebalancing based on past volatility.

Second, the position of the portfolio is always positive and smaller than one, indicating that

the downside portfolio does not have to take leveraged position or short-selling position.

If we consider a factor portfolio as the baseline asset, it is typically a long-short portfolio

by construction. Flipping sign on weight can cause the switching position from buying to

selling, which induces large transaction costs. Lastly, to highlight the effectiveness of our
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model, it is important to note that our model is based on downside forecasting instead of

mean forecasting.

2.1 Beta and portfolio choice

As shown in equation (5), the Fβ measure decreases in the count of FP and FN, corresponding

to type I and type II errors. When we predict future state with the logistic model described

above, we face the inevitable trade-offs between the two types of errors, as one cannot reduce

type I and type II errors simultaneously. Different levels of β adjust the relative weight

assigned to the two types of errors. When searching for optimal threshold yt, β adjusts the

importance of avoiding type I error relative to avoiding type II error. Two types of errors are

equally weighted if β = 1.2 The tolerance to FP is higher if β > 1, and FP will be punished

more relative to FN if β < 1. The tolerance to FP relative to FN is determined by investors’

attitudes toward losses caused by FP compared to FN.

Economically, the two types of errors in downside prediction can have different impacts on

the investor’s objective function. In our setting, a higher level of β implies a “conservative”

strategy by adopting a relatively lower threshold. This yields more positive predictions

(predicting a downside state), and reducing the number of FN at the sacrifice of an increasing

number of FP. If β is high enough, such that the model always makes downside predictions,

then our managed portfolios always take a reduced position of the underlying asset. On

the contrary, the other direction yields opposite results: lower β indicates an “aggressive”

strategy. When β approaches zero, the managed portfolio is merely a buy-and-hold strategy.

Empirically, we consider both the rule-of-thumb value of β = 1, i.e., the F1 measure, as well

as a selected value of β between the two extremes. We also discuss some empirical guidance

on how to select an optimal β ex-ante in Section 5.2.

2The F1 measure is commonly used for prediction evaluation.
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3 Data and Sample

We collect daily and monthly data on factor excess returns for the market (MKT), size

(SMB), and value (HML) factors of the Fama and French (1993) three-factor model, the

momentum factor (MOM), profitability (RMW), and investment (CMA) factors of the Fama

and French (1993) five-factor model, the profitability (ROE) and investment (IA) factors of

the Hou et al. (2015) q-factor model, and the betting-against-beta factor (BAB) in Frazzini

and Pedersen (2014).3 The sample period starts in August 1926 for MKT, SMB, and HML;

January 1927 for MOM; August 1963 for RMV and CMA; February 1967 for ROE and IA;

and February 1931 for BAB. The sample periods end in December 2016.

We also collect the 94 anomaly portfolios listed in Cederburg et al. (2020), including

the anomaly variables reported in Hou et al. (2015) and McLean and Pontiff (2016). We

match the list of the anomalies with Cederburg et al. (2020) to directly compare the perfor-

mance of our strategies with that of volatility-managed portfolios in real-time, and show the

improvement in our downside-managed portfolios.

In our empirical analysis, we construct monthly re-balanced managed portfolios, i.e., we

consider a month as a time period t in Section 2. Thus, we use monthly observations to

calculate and evaluate portfolio performances and use daily observations to calculate return

volatilities following (2). As described, we apply an expanding window to predict the state

for each month t. We also require that t > 120 to specify an initial 120 months as the

training period. Thus the out-of-sample period runs from the 121th month to the end of the

sample period. The cutoff that defines a downside state in (3), rvar, is selected as the 5th

percentile of past returns.

Besides using the past realized volatility as a predictor for downside state, we also con-

struct alternative predictors using information extracted from option prices. We obtain S&P

500 index options data from OptionMetrics with a sample period spanning from January

3The data are obtained from authors’ web pages.

11



1996 to December 2020. We consider the SVIX index constructed by Martin (2017) for

market downside forecasting. Martin (2017) develops a measure for the market expected

return based on risk-neutral variance implied by the prices of options written on the S&P

500 index:

SVIX2
t→T =

2

(T − t)Rf,tS2
t

[∫ Ft,T

0

putt,T (K)dK +

∫ ∞

Ft,T

callt,T (K)dK

]
, (6)

where putt,T (K) and callt,T (K) are the time-t prices of put and call options with strike price

K and that mature at time T , Ft,T is the time-t price of S&P 500 futures that mature at time

T , St is the level of the S&P 500 index at time t, and Rf,t is the risk-free rate. SVIX index is

calculated at time t isthe annualized risk-neutral variance of the market excess return from

t to T . In our empirical analysis, we calculate SVIX with options with maturity of 9-month.

Given that the variation in market downside expectation may be better captured in put

option prices, we also consider two parts of the SVIX index: upside SVIX and downside

SVIX. We calculate them from call and put options separately.

SVIX-Up2
t→T =

2

(T − t)Rf,tS2
t

∫ ∞

Ft,T

callt,T (K)dK, (7)

SVIX-Down2
t→T =

2

(T − t)Rf,tS2
t

∫ Ft,T

0

putt,T (K)dK, (8)

4 Performance of Volatility-Timing Strategies

This section tests the real-time performance of downside-managed portfolios against the

original unmanaged portfolios and the volatility-managed portfolios. We first introduce

various performance measures that we use to evaluate all trading strategies. Then we discuss

the construction of real-time volatility-managed portfolios. Finally, we examine the real-time
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performance on nine major factors and 94 anomaly portfolios.

4.1 Performance evaluation measures

To evaluate portfolio performance, we use four traditional performance measures that has

been widely applied in the literature, based on the mean, standard deviation, and skewness

of realized returns.

First are the Sharpe ratio (SR) and the certainty-equivalent return (CER) of each port-

folio:

SR =
µ̂

σ̂
,

and

CER = µ̂− γ

2
σ̂2,

where µ̂ and σ̂ are the sample mean and volatility of the realized returns of each strategy.

For the CER, we choose the risk-aversion level of γ to be 6, but other values of γ does not

change any of our conclusions. Higher CER suggests improved utility gain. To statistically

distinguish the performance of two strategies, we follow Jobson and Korkie (1981) to calculate

the p-value of the SR difference and DeMiguel et al. (2009) to compute the p-value of the

CER difference.

The two measures above are crucial for the mean-variance investors. However, when

the return distribution is skewed, and investors have a preference for the return asymmetry,

mean-variance rules may no longer be as efficient (see Pedersen and Satchell (2002) and

Jarrow and Zhao (2006)). To account for the return distribution asymmetry when measur-

ing the utility gain, we adopt an alternative certainty equivalent return with asymmetry,

CERasy, implied by Dahlquist et al. (2017):

CERasy = µ̂− γ̃ − 1

2
σ̂2 + χ̃σ̂δ̂,
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where δ̂ is a measure that accounts for the skewness of the distribution of the realized returns,

in particular, skewness = 2δ3, γ̃ = 6.2, and χ̃ = 0.0488 according to the calibration result4.

Finally, we also consider maximum drawdown (MDD). This measure is particularly

helpful for measuring the ability to shrink the downside risk (Liu et al. (2019), Van Hemert

et al. (2020)). The measure is the largest peak-to-trough cumulative return over the life of an

investment. Quantitatively, we first calculate the drawdown for each year y in our sample:

DDy =
TVy−1 − PVy−1

TVy−1

,

where PVy−1 and TVy−1 are the peak value and trough value of the cumulative returns over

year y − 1. Then the MDD is calculated as:

MDD = max
y

DDy.

4.2 Real-time volatility-managed portfolios

To fairly evaluate the performance of volatility-managed portfolios, following Liu et al.

(2019), we construct the real-time version of the volatility-managed portfolios in Moreira

and Muir (2017). Review that for a given asset or anomaly portfolio, a volatility-managed

portfolio is constructed as:

fσ,t =
c

σt−1

ft,

where ft is the buy-and-hold excess portfolio return in month t, and σt−1 is the volatility in

the previous month estimated by (2), and c is chosen as the scaling parameter, such that ft

and fσ,t have the same unconditional volatility. Volatility-managed portfolios are criticized

by the in-sample estimation of c in Liu et al. (2019) since the parameter is only known to

investors ex-post.

4According to the calibration results in Dahlquist et al. (2017), with γ̃ = 6.2 and χ̃ = 0.0488, the asset
allocation is closest to 30/70 principal
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Following Liu et al. (2019) and Cederburg et al. (2020), we construct a real-time version of

the volatility-managed portfolios by estimating an out-of-sample scaling parameter c relying

on information up to month t−1 :

fσ,t =
ct−1

σt−1

ft, (9)

wherec ct−1 is the real-time scaling parameter, such that

σ(fσ,τ ) = σ(fτ ),

where τ = 1, 2, 3, ..., t − 1. To keep consistent with the downside-managed portfolios, we

consider the initial 120 months as the training period for the estimation of ct and expand

the window until the end of the sample period. For implementation consideration, we also

impose a constraint that the leverage to be no greater than five on the weight of the volatility-

managed portfolios.

4.3 Out-of-sample performance

In this subsection, we compare the out-of-sample performance of our downside-managed

portfolios with the real-time volatility-managed portfolios based on the evaluation measures

described in Section 4.1. We construct our downside-managed portfolio based on the F1

measure. For illustrative purpose, we also consider a Fβ∗ measure, in which β∗ is chosen to

maximize the corresponding in-sample performance. (***which one? explain.***) This is

the highest performance one could potentially achieve by adjusting his/her attitude between

type I and type II errors of predicting a downside state. We also report the performance of

the original factor as benchmarks.

4.3.1 Volatility-timing for the market
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Panel A of Table 2 reports performance of different portfolios based on the S&P 500 excess

returns during 1962 to 2020, with volatility estimated based on daily returns over the previous

month following (2). We can see that the F1 downside-managed portfolio outperforms the

original unmanaged portfolio with higher SR (0.342 vs. 0.246), higher CER (0.006 vs. -

3.232), and higher CERasy (-1.094 vs. -5.061). Statistical test results show that both the SR

and CER are significantly higher. In particular, the p-value for testing the difference in SR

is 0.010 and that for testing the difference in CER is 0.000. Also, the F1 downside-managed

portfolio has a much less MDD of -0.304, indicating that our strategy manages downside

returns well.

Our trading strategy also outperforms the volatility-managed portfolio in all metrics.

For example, the CSR of our downside-managed portfolio, 0.006, is much higher than the

CER of the volatility-managed portfolio, -2.003. However, consistent with Moreira and

Muir (2017), for the volatility-managed portfolio, the SR and CER are higher than the

benchmark, though the differences are not significant (with p-value equal 0.198 and 0.160,

respectively).

It is expected that the Fβ∗ downside-managed portfolio exhibits the best performance.

Its SR, CER, CERasy, and MDD are 0.356, 0.582, 3.814, and -0.271, respectively. This

shows the high potential that our downside-managed portfolios could obtain by adjusting

investors’ preference among type I and type II errors. However, it is important to notice

that the optimal β∗ is selected in sample for this analysis. In Section 5.2, we will further

discuss some guidance that we could use in practice to select an optimal β ex-ante.

Panel B of Table 2 reports the performance of the downside-managed portfolios with

volatility estimated from option prices, including SVIX, SVIX-Up, and SVIX-Down in (6),

(7), and (8), respectively. Due to the availability of option pricing data, the sample period

for all portfolios in Panel B spans from 1996 to 2020. Therefore, for comparison, we also

include the performance measures for the four portfolios reported in Panel A over the same

sample period. The downside-managed portfolios constructed with SVIX-related measures
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achieve much better performance than those based on realized volatility. This is what we

expect, because information embedded in the option prices is forward-looking. Impressively,

the downside-managed portfolio based on SVIX-Down, calculated from put options prices,

has the highest SR of 0.480, the highest CER of 1.178, the highest CERasy of -0.041xx, and

the lowest maximum drawdown of -0.271. This is consistent with empirical findings in the

literature that the put option prices could better reflect investors’ expectations about the

left tails of the underlying distributions, such that SVIX-Down, constructed from put option

prices, better predicts the downside returns, yielding higher performance by correctly avoid

the downside of the market.

4.3.2 Volatility-timing for nine major factors

Next, we study the performance of volatility-timing strategies among the nine classical as-

set pricing factors, including MKT, SMB, HML, MOM, RMW, CMA, ROE, IA, and BAB.

Table 3 reports performance metrics of nine original factors, the corresponding volatility-

managed portfolios, and downside-managed portfolios, and Table 4 presents pairwise com-

parison based on the difference in SR and CER. Compared with the original factors, our

downside-managed portfolios have higher SR for all nine factors, with six out of nine sig-

nificantly different at the 10% level. Our downside-managed portfolios also improve mean-

variance utility, measured by the CER increase, in seven cases, with five significant dif-

ferences. The CERasy and MDD measures also exhibit substantial improvements of our

downside-managed portfolios over the original factors, showing the ability of our strategy in

controlling for the loss.

In contrast, the volatility-managed portfolios outperform the benchmark in five out of

nine cases measured by SR, with only three significant differences (MOM, ROE, and BAB),

and only three cases measured by CER, with 2 significant improvements (ROE and BAB).

The downside-managed portfolios also perform well relative to volatility-managed portfolios:

six higher SR with four being significant, and five higher CER with all being significant.
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The downside-managed portfolios especially have appealing performance in the MMD

and CERasy. Compared with volatility-managed portfolios, downside-managed portfolios are

better at avoiding large negative returns. A higher CERasy indicates that downside-managed

portfolios generate more positively skewed return distributions than the volatility-managed

or unmanaged portfolios.

The volatility-managed portfolios of MOM, ROE, and BAB perform the best in this

analysis, even though our downside-managed versions are not far behind. Cederburg et al.

(2020) point out that the effectiveness of volatility-managed portfolios could enhance the

SR when there is negative and persistent relation between lagged volatility and forward

returns, as shown by the covariance term in Table 1. However, the impressive performance

of volatility-managed portfolios for these three factors cannot dominate downside-managed

portfolios if we allow the variation in β and predict the downside state with the Fβ∗ measure.

In Panel C of Table 3, we report the performance of downside-managed portfolios using

the Fβ∗ measure. We find that the downside-managed portfolios indeed achieve the best

performance using the Fβ∗ measure.

4.3.3 Volatility-timing for 94 anomalies

We next compare the performance for all 94 anomaly portfolios as in Cederburg et al.

(2020). For each anomaly portfolio, we make a pair-wise comparison of the SR, CER, and

CERasy among the corresponding downside-managed portfolio, volatility-managed portfolio,

and unmanaged portfolio. Table 5 reports the number of cases where the differences in the

performance measures are positive or negative. Numbers in brackets represent the number

of significant positive or negative at the 5% confidence level.

Downside-managed portfolios improve the SR in 66 out of 94 anomalies compared to

the original factors, with a winning rate of 70.21%. Among them, there are 32 significant

increase at the 5% level. Our downside-managed portfolio also improves the SR for the
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volatility-managed portfolios in 45 anomalies with 22 significant increase. Considering the

CER measure, downside-managed portfolios achieve even better performance. Particularly,

downside-managed portfolios have a higher CER for 88 out of 94 anomalies, with 66 being

significant, compared to the original unmanaged portfolios. The CER of downside-managed

portfolios are also higher than that of volatility-managed portfolios for 80 anomalies, with

54 being significant. Results show that our downside-managed portfolios benefit a mean-

variance investor in a very robust way. If we further consider the asymmetry of the return

distribution, we see that with respect to the CERasy, downside-managed portfolios still

have well-matched performance: they beat the original in 81 anomalies and outperform the

volatility-managed combination portfolios in 67 cases. This broad test of the portfolio per-

formance comparison provides strong evidence that downside-managed portfolios dominate

in the horse race.

5 Further Analysis

In this section, we present some further analysis to complement the empirical analysis of our

downside-managed portfolios. First, we evaluate the influence of transaction costs to the

performance of volatility-timing strategies. We also examine the choice of optimal β in the

Fβ measure, and provide some implications on how to select β ex-ante.

5.1 Transaction costs

As pointed out in Barroso and Detzel (2021), a significant amount of trading is required to

implement volatility-managed portfolios. Therefore, the robustness of portfolio performance

to transaction costs is an important issue in our study. Trading costs are estimated based on

several reasonable assumptions. Specifically, we test a wide range of transaction costs from

1 bp to 50 bps following Wang and Yan (2021), considering the different levels of trading
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techniques and various liquidity demands in the real world.5

Table 6 provides an overview of the robustness of the volatility-timing strategies for the

market by showing the SR under different levels of transaction costs. Consider volatility-

managed portfolios first. With an increased transaction cost from 1bp to 50 bps, the SR of

vol-managed portfolios decreases sharply, from 0.288 to 0.110 for the sample period starting

from 1962, and decreases from 0.274 to 0.097 for the sample period since 1996. On the

contrary, the downside-managed portfolios suffer less from transaction costs. For the sample

period from 1962, the SR of the downside-managed portfolios slightly declines from 0.341 to

0.303. For the sample period from 1996, the SR almost remains quite stable for all downside-

managed portfolios. For example, the SR of the downside-managed portfolio based on SVIX

changes from 0.385 to 0.372 when the transaction costs increases from 1bp to 50 bps.

These results show that the performance of our downside-managed portfolio is much

more robust against transaction costs than volatility-managed portfolios. This is due to the

simple construction of our strategy. Instead of continuously adjusting positions according to

the volatility levels as in volatility-managed portfolios, we only switch positions from full to

reduced levels when we predict a downside state. Therefore, our strategy does not suffer as

much from large transaction costs as volatility-managed portfolios do.

In addition to different assumptions on the trading costs, we also compute the break-even

transaction costs that render the performance measures indifferent to the original unman-

aged portfolios. This measure resembles the performance fee suggested in Fleming et al.

(2001), which is the maximum fee an investor would be willing to pay to switch from the

benchmark unmanaged portfolios to volatility-timing strategies according to a certain per-

formance evaluation measure. A higher break-even transaction cost means that the portfolio

has a higher tolerance to transaction costs while maintaining a positive difference in the

performance metric relative to benchmarks.

5See related studies discussing trading costs differentiation: Fleming et al. (2003), Hasbrouck (2009),
Asness et al. (2015), Moreira and Muir (2017), Barroso and Detzel (2021).
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Table 7 and Table 8 present break-even trading costs for S&P 500 index and 9 major

factors with respect to SR, CER, and CERasy. Downside-managed portfolios have much

higher break-even transaction costs over volatility-managed portfolios in general. For the

S&P 500 index over the sample starting from 1962, the break-even transaction fee with

respect to SR, CER, and CERasy for the volatility-managed portfolios are $12.67, $21.67.

and $20.27, respectively. While for the same sample period, the corresponding break-even

transaction costs are $123.76, $299.78. and $410.92 for our downside-managed portfolios.

Other sample period and factors give the same conclusions. Additionally, Table 9 reports the

break-even transaction costs on 94 anamalies, providing further evidence of the advantage

of downside-managed portfolios regarding transaction costs.

To better understand the reason why our downside-managed portfolios are more robust

to transaction costs, in Table 7 and Table 8, we also report the turnover ratio for each of the

portfolios of interest.6 The turnover ratio differences between the two managed portfolios are

quite large. The volatility-managed portfolios systematically require a much higher monthly

turnover ratio (e.g. 81.6% for MOM and 64.7% for MKT). Such turnover ratio is extremely

high even after we apply the constraint of 5 on the leverage. While the turnover ratios

for downside-managed portfolios range from 5% to 6% per month. Such low turnover ratio

results in that downside-managed portfolios have a higher tolerance to transaction costs, less

likely to suffer from liquidity events and financial crises.

5.2 Economics of Downside Management

The relative performance of downside management with volatility timing varies across fac-

tors when compared to the unmanaged or volatility-managed portfolios. Next, we explore

the potential explanations for these variations, which could also provide guidance on appro-

priate applications of downside management. As common with any market-timing strategy,

6We calculate the turnover ratios following Hasbrouck (2009).

21



downside management might not be optimal in every scenario.

5.2.1 Downside Management and Skewness

The performance of our downside-managed portfolios with the F1 measure demonstrates

the effectiveness of the strategy, while results based on the Fβ∗ measure show the optimal

implementation of the strategy getting depends on the return distribution of the unmanaged

portfolio. To illustrate this point, we examine the behavior of the strategy under different

levels of β, and show both empirically and theoretically that the optimal choice of β can be

related to the skewness of the original factor.

In Section 2.1, we discuss the association between the choice of β and the balance between

the type I and type II errors of predicting a downside state. Now we further illustrate this

relation empirically. The top-left panel of Figure 2 plots the type I v.s. type II errors of

downside state prediction with different levels of β in Fβ measure for each factor. A larger

marker size corresponds to a higher level of β. We have several observations from the plot.

First, for all of the factors, the relation between the two types of errors shows the trade-off:

reducing type I error is at the sacrifice of enlarging type II error, and vice versa. Second, the

performance lines are analogous to the indifference curve. If we consider that investors are

constrained by the information budget, and different investors have different weights on type

I and type II errors, then the optimal line is the tangent point of the information budget

line with these curves.7 Third and more importantly, we observe significant differences in

the trade-off among the factors, and some factors, e.g. ROE, MOM, and RMW, see higher

penalty from false negatives than from false positives in downside prediction, and thus these

factors could benefit more from volatility-timing strategies.

7Intuitively, if the agent has zero tolerance to type I error, it is better off to hold cash. Conversely, if the
agent cannot live with any opportunity cost of missing the upside potential of the asset, then the optimal
choice would be the full position on the original portfolio. An interesting implication from this result is that:
either buy-and-hold or full cash position is a corner solution.
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To better see the investment implications of assigning different values to β, Figure 3 plots

the return density of the two tails of downside-managed portfolios constructed by Fβ measure

with different levels of β. We show return density by defining expected tail loss (expected

tail profit) as the mean of all returns that are lower (higher) than the 5th (95th) percentile

of the downside-managed portfolio returns. From the relation between β and the expected

tail loss/profit, we can see a clear trade-off between downside loss and upside opportunity

cost. An increased value of β yields more positive predictions of the downside state, thus

reducing both tails at the same time.

As β captures the degree of downside management, we conjecture that the optimal value

of β is associated with the skewness of the return distribution of unmanaged portfolio. Be-

cause skewness is a measure of the asymmetry of the return distribution, a higher degree of

downside management is appropriate for heavier left tails. In this section, we examine the re-

lation between the skewness of unmanaged return distribution and the optimal β maximizing

the CERasy, the performance evaluation measure that accounts for return asymmetry.8

In this analysis, we adopt a broader sample and examine the 187 anomaly portfolios,

summarized by Hou, Xue, and Zhang (2020). For each anomaly, we search the optimal β in

Fβ∗ measure from a set of values:

β = {20, 19, 18, ..., 2, 1, 1
2
,
1

3
,
1

4
, ...,

1

20
},

which represents that the relative weight of type I error is punished more than type II error

by a range from 20 times to 1/20 times. We then search the optimal β that maximizes

CERasy. As shown in Figure 5, if the distribution of the unmananaged portfolio has a

higher skewness, the optimal β tends to be lower.

8The optimal β depends on investor preference. We choose the CERasy to highlight the effect of skewness.
Our results are qualitatively similar but weaker when we choose performance measures ignoring return
asymmetry.
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5.2.2 A Stylized Model

Downside management could be appropriate for portfolios that have more negatively skewed

distributions since the benefit of avoiding downside could dominate the cost of missing upside,

relative to the buy-and-hold strategy. Downside management could also benefit investors

who are loss averse.9 In our setting, we provide a theoretical framework to illustrate the

economics of downside-managed portfolios.

Borrowing the theoretical framework from Brunnermeier and Parker (2005), we assume

a two-state world with two periods, in which investors choose portfolio weights between

a risk-free asset and risky assets. A risky asset is assumed to have the following payoff

distribution:

State Objective probability Predicted probability Payoff return in period 2

Downside p π Zd = µ− σ
√

1−p
p

Normal 1− p 1− π Zu = µ+ σ
√

p
1−p

In this setting, the payoff has fixed mean, µ, and variance, σ, and its skewness increases

in the probability of the downside state. To isolate the effect of skewness on portfolio choice,

we set µ = 0. In period one, the investor adopts a model with the predicted probability

of the downside state being π and chooses the optimal weight α to maximize her expected

utility:

max
α

πu(1 + αZd) + (1− π)u(1 + αZu), s.t. 0 < π < 1,

the first-order condition of the maximazation problem is:

πu′(1 + αZd)Zd + (1− π)u′(1 + αZu)Zu = 0.

9On an aggregate level, many studies document that the representative investor places higher weights
on losses than on gains when assessing her portfolio risk (Allais (1979); Gill and Prowse (2012)) and shows
a preference for skewed assets (Kane (1982); Dahlquist et al. (2017); Mu et al. (2019)). By assuming
nonstandard preference, this strand of literature provides theoretical and empirical evidence showing that
investors’ portfolio depends on the return distribution.
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Under the first-order condition, the optimal weight allocated on the risky asset is a function

of predicted probability π. The optimal predicted probability π∗ is the probability that

maximizes the expected time-average of utilities of the two periods:

max
π

1

2
[πu(1 + α∗(π)Zd) + (1− π)u(1 + αZu)] · · · anticipated EU

+
1

2
[pu(1 + α∗(π)Zd) + (1− p)u(1 + αZu)] · · · actual EU,

with the first-order condition:

u(1 + α∗(π)Zu)− u(1 + α∗Zd) = −[pu′(1 + α(π)Zd)Zd + (1− p)u(1 + α∗Zd)]
dα∗

dπ
. (10)

In our setting, the objective probability p can be estimated as a constant from the

historical data. When the investor chooses downside management, π∗ would deviate from p

and thus the difference between the unmanaged portfolio and downside-managed portfolio.

We first demonstrate the relation between the skewness of the return distribution and

investors’ optimal choice and plot this relation in Figure 4. Without loss of generality, we

assume U(c) = c1−γ

1−γ
and γ = 3. The left panel shows that the optimal subjective probability

is negatively correlated with the skewness of the risky asset, and the right panel indicates

higher skewness is associated with higher optimal weight on the risky asset.

Next, the choice of downside management depends on the investor preference, which

can arise from two sources. The first source is the specification of U(c), especially on the

skewness of the return distribution. The second source is the relative weight between the

anticipated and actual EU components, assumed to be equal in our specification, in that a

higher weight on the anticipated EU component leads to stronger downside management.

In our setting, the optimal predicted probability corresponds to the choice of β. Given

a model for downside prediction, a higher β corresponds to a prediction that the downside

state is more likely to happen in the next period. Therefore, the skewness of the return
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distribution has direct implication on the optimal choice of β.

With empirical evidence and theoretical prediction, we demonstrate that investors are

able to further enhance the performance of our downside-managed portfolios by ex-ante

selecting a higher (lower) level of β for factors with a more (less) negatively skewed return

distribution.

6 Conclusion

The volatility-managed portfolio introduced by Moreira and Muir (2017) is regarded as

a groundbreaking study to demonstrate that buy-and-hold is a sub-optimal portfolio by

showing the impressive performance of the volatility-timing strategy. Recent papers criticize

their work in two aspects: the strategy is difficult to implement in real-time and suffers

from limits to arbitrage. We propose a downside-managed portfolio constructed in a real-

time scenario. Empirically, we find that our portfolios outperform the original buy-and-

hold portfolios as well as volatility-managed portfolios evaluated by different performance

measures. We also conduct a large set of tests following Cederburg et al. (2020) and find that

our strategy is robust to different factors and anomaly portfolios. Moreover, our strategies

have a higher tolerance to transaction costs and liquidity risks.

*** shall we understate everything about beta selection?*** The downside-managed port-

folio is based on the optimization of the threshold to predict the downside state from the

normal state by estimating downside probability. We highlighted that the optimal threshold

varies on the weight of type I error relative to type II error, and the relative weight depends on

the two aspects: the aversion to downside and asymmetry in return distribution. By borrow-

ing the setting in Brunnermeier and Parker (2005), we derive a theoretical relation between

the skewness of return distribution and the optimal β in Fβ measure under a non-standard

preference with asymmetric weight on the tails of the return distribution. In summary, we

show that downside-managed portfolios offer a robust method of volatility-timing and could
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enable buy-and-hold investors to achieve higher utility gains.
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Figure 1: Rolling Covariance: MKT factor
Notes: The figure displays the estimates of coefficients of three sets of rolling regressions. The

left-hand variables in the three panels represent the Sharpe ratio, SRt, in month t, 20th percentile

of daily returns, r20tht , in month t, and the total return, rt, in month t, respectively.
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Figure 2: Model performance under different levels of beta: Nine factors

Notes: The figure shows the rate of type I and type II errors ( #FP
#Total and #FN

#Total ) by maximizing

Fβ measure with different levels of β for each factor. In the top left panel, the size of the marker

represents the value of β (larger size stands for higher β). In the remaining panels, we mark

the location of optimal β choice to maximize the SR, CER, and CERasy, and annotate the

corresponding value of the performance metrics.
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Figure 3: Tails density and Fβ measure
Notes: The figure displays the tail density for nine factors. For each factor, we obtain expected tail

loss (expected tail profit) by calculating the mean of all returns that are lower (higher) than the

5th (95th) percentile of the downside-managed portfolio returns that are calculated with different

β in Fβ.
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Figure 4: Relation at optimum
Notes: The figure displays the optimal subjective beliefs and optimal weight on the risky asset at

different levels of skewness of the terminal payoff.
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Figure 5: Skewness and Optimal β: 187 Anomaly Portfolios
Notes: The figure displays the skewness of 187 anomaly portfolios and the corresponding optimal

level of β maximizing the CERasy.
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Table 1: Regression Coefficients: Total Return vs. VaR

The table shows the coefficient estimation of two sets of regression for nine major factors:

SRt = α̂+ β̂σt−1;

rtotalt = α̂+ β̂σt−1;

r20tht = α̂+ β̂σt−1,

(11)

where SRt is the Sharpe ratio in month t; r20tht is the 20th percentile return calculated using daily

returns in month t; rtotalt is the total return in month t. The right-hand side variable σt is the

standard deviation of daily returns in month t − 1. The table reports the β̂ estimation, and the

corresponding t-stat is reported in the bracket.

MKT SMB HML MOM RMW CMA IA ROE BAB

SRt -3.22 0.88 -0.58 -10.43 -5.20 4.93 2.45 -17.32 -5.72
[-2.34] [0.30] [-0.22] [-4.71] [-0.88] [0.73] [0.39] [-2.60] [-2.18]

rtotalt -0.08 0.10 0.76 -1.45 1.25 1.53 1.31 -1.01 0.18
[-0.29] [0.34] [2.57] [-4.88] [3.00] [3.49] [3.06] [-1.99] [0.60]

r20tht -0.58 -0.57 -0.58 -0.62 -0.60 -0.46 -0.51 -0.61 -0.61
[-25.04] [-27.65] [-32.55] [-26.54] [-21.16] [-16.05] [-16.76] [-17.71] [-25.41]
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Table 3: Real-time Performance: Nine factors

The table compares the performance metrics, including the SR, MDD, CER, and CERasy. The

first three panels present the performance metrics for nine original portfolios (Panel A), the baseline

downside-managed portfolios (Panel B), the downside-managed portfolios with Fβ∗ measure (Panel

C), and the real-time volatility-managed portfolios (Panel D). The sample period spans from 1926

to 2020. The CER results adopt for γ = 6, and CERasy are for γ̃ = 7.2 and χ̃ = 0.0488, according

to the calibration results in Dahlquist et al. (2017)

MKT SMB HML MOM RMW CMA IA ROE BAB

Panel A: Original factors

Sharpe ratio 0.483 0.163 0.492 0.488 0.460 0.629 0.658 0.834 0.844
MDD -0.471 -0.310 -0.313 -0.551 -0.315 -0.139 -0.137 -0.264 -0.395
CER 0.194 -1.384 1.951 0.940 1.756 2.900 3.013 5.034 5.520

CERasy -1.745 -0.395 3.001 -1.081 2.461 3.627 3.611 4.283 4.345

Panel B: Downside managed portfolios (F1 measure)

Sharpe ratio 0.511 0.173 0.521 0.530 0.496 0.663 0.661 0.899 0.946
MDD -0.358 -0.241 -0.207 -0.378 -0.200 -0.139 -0.121 -0.201 -0.350
CER 1.333 -0.859 2.263 1.931 1.967 2.930 2.754 4.863 6.017

CERasy 1.452 0.777 3.963 1.741 2.824 3.914 3.474 4.777 6.002

Panel C: Downside managed portfolios (Fβ∗ measure)

Sharpe ratio 0.517 0.186 0.537 0.584 0.553 0.700 0.702 0.947 1.019
MDD -0.358 -0.238 -0.194 -0.328 -0.168 -0.087 -0.094 -0.139 -0.217
CER 1.615 -0.258 2.397 2.844 2.252 3.009 3.000 5.171 6.017

CERasy 1.669 0.871 4.134 2.350 3.501 3.996 3.792 5.253 6.002

Panel D: Volatility-managed portfolios

Sharpe ratio 0.303 0.165 0.332 0.539 0.556 0.474 0.620 1.024 0.900
MDD -1.375 -0.391 -0.532 -0.507 -0.243 -0.303 -0.240 -0.131 -0.486
CER -9.429 -2.322 -1.349 0.386 2.454 1.872 2.967 6.949 6.569

CERasy -16.143 -0.428 1.346 -2.388 3.170 2.573 3.825 8.594 7.442
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Table 4: Performance Comparison: Nine Factors

The table shows the pairwise performance comparison of the SR, CER, and corresponding p-

value of difference. The calculation of p-value of Sharpe ratio difference follows Jobson and Korkie

(1981) approach, and the calculation of p-value of CER follows DeMiguel et al. (2009) approach.

and CERasy are for γ̃ = 7.2 and χ̃ = 0.0488, according to the calibration results in Dahlquist et al.

(2017)

MKT SMB HML MOM RMW CMA IA ROE BAB

Panel A: Sharpe ratio comparison

Downside vs. Orginal

Dif 0.028 0.010 0.030 0.042 0.036 0.034 0.003 0.066 0.102
p-value 0.065 0.178 0.062 0.016 0.063 0.022 0.228 0.002 0.000

Vol-managed vs. Orginal

Dif -0.180 0.002 -0.160 0.051 0.097 -0.155 -0.038 0.191 0.056
p-value 0.014 0.245 0.021 0.156 0.086 0.027 0.173 0.018 0.145

Downside vs. Vol-managed

Dif 0.208 0.008 0.190 -0.009 -0.061 0.189 0.041 -0.125 0.045
p-value 0.006 0.231 0.007 0.232 0.123 0.008 0.161 0.045 0.158

Panel B: CER comparison

Downside vs. Orginal

Dif 1.139 0.525 0.312 0.991 0.211 0.029 -0.259 -0.171 0.498
p-value 0.006 0.019 0.077 0.005 0.153 0.229 0.102 0.184 0.043

Vol-managed vs. Orginal

Dif -9.624 -0.938 -3.299 -0.554 0.698 -1.028 -0.046 1.915 1.049
p-value 0.000 0.084 0.002 0.187 0.130 0.073 0.241 0.042 0.099

Downside vs. Vol-managed

Dif 10.762 1.463 3.612 1.545 -0.487 1.057 -0.213 -2.085 -0.551
p-value 0.000 0.032 0.000 0.083 0.142 0.057 0.203 0.018 0.157
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Table 6: Transaction costs: S&P 500 index

The table reports the Sharpe ratio of downside-managed portfolios and volatility-manged portfolios

after accounting for transaction costs. We consider 5 levels of transaction costs: 1 bps, 10 bps, 14

bps, 25 bps, and 50 bps. All results are in annualized terms.

Vol-managed Downside
Downside
SVIX

Downside
SVIX-Up

Downside
SVIX-Down

1962-present

SR1bps 0.288 0.341
SR10bps 0.256 0.334
SR14bps 0.241 0.331
SR25bps 0.201 0.323
SR50bps 0.110 0.303

1996-present

SR1bps 0.274 0.380 0.385 0.336 0.480
SR10bps 0.242 0.376 0.382 0.333 0.478
SR14bps 0.227 0.374 0.381 0.331 0.477
SR25bps 0.188 0.369 0.379 0.327 0.474
SR50bps 0.097 0.358 0.372 0.317 0.467
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Table 7: Turnover ratios and break-even transaction costs: S&P 500 index

The table reports the implied transaction costs needed to drive each performance metric (SR, CER,

and CERasy) to zeros. The table also reports the average absolute change in monthly weights of

the corresponding portfolios.

Vol-managed Downside
Downside
SVIX

Downside
SVIX-Up

Downside
SVIX-Down

1962-present

Turnover 0.437 0.073
SRbreakeven 12.67 123.76
CERbreakeven 21.67 299.78

asyCERbreakeven 20.27 410.92

1996-present

Turnover 0.525 0.044 0.027 0.042 0.031
SRbreakeven 7.82 291.31 538.32 220.85 807.62
CERbreakeven -12.64 486.11 695.90 374.28 1009.00

asyCERbreakeven -31.94 568.84 805.70 475.79 1099.00
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Table 8: Turnover ratios and break-even transaction costs: Nine major factors

The table reports the implied transaction costs needed to drive each performance metric (SR, CER,

and CERasy) to zeros. The table also reports the average absolute change in monthly weights of

the corresponding portfolios.

MKT SMB HML MOM RMW CMA IA ROE BAB

Panel A: Downside portfolios

Turnover 0.056 0.070 0.059 0.062 0.053 0.042 0.067 0.078 0.067
SRbreakeven 58.31 11.04 36.45 70.91 37.64 41.16 2.49 45.38 109.98
CERbreakeven 167.93 63.04 45.30 129.59 33.37 6.28 -32.60 -17.12 61.74

asyCERbreakeven 447.43 139.97 136.88 362.76 63.05 50.76 -15.31 48.34 203.32

Panel B: Vol-managed portfolios

Turnover 0.647 0.512 0.65 0.816 0.512 0.59 0.583 0.578 0.602
SRbreakeven -55.37 0.44 -29.90 9.11 11.51 -16.84 -4.23 28.82 10.19
CERbreakeven -133.31 -15.71 -44.44 -5.68 11.51 -14.50 -0.62 29.77 15.05

asyCERbreakeven -202.37 -0.52 -21.46 -10.69 10.99 -14.58 3.12 62.33 27.82
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